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INTRODUCTION
Simultaneous forced and free convection by laminar flow on an in-

verted cone rotating about a vertical axis in a quiescent fluid has been
analyzed by Hering and Grosh (ref. 1). In their study, the expansion of
the heated fluid produced a buoyancy force that was directed upward and
avay from‘the apex at the lowest point on the cone. A simultaneous swirl-
ing motion or the fluid was induced by the adherence of the fluid at the

surface to the rotating cone. The surface temperature increased linearly

with distance from the apex so that similar velocity and temperature pro-

" files were obtained. In practice, however, the isothermal cone is most

often encountered. Kreith and Kneisel (ref. 2) reported average heat-
transfer performance on rotating isothermal cones with free and forced
convection. Local heat-transfer results are difficult to obtain from
experimentally determined average results especially in the present case
because similar velocity and temperature profiles do not occur.

In the present study, a series solution to the isothermal problem i;\\
formulated, and the first terms of the series are presented for a Prandtl
number of 0.72. From these results, local heat transfer and shear per-
formance can be calculated.

ANALYSIS

Laminar boundary-layer equations suitable for a rotating cone with
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buoyancy forces in the axial direction are

%& + g% + % =0 (1)
u ou + du W _ azu
R Bg(cos Y)(T - T) +v —5 (2)
oy
ow ow ., uw _ d%y
U.&'F'Vg;'i-—;—v-a—é' (3)
y
dr . dr %t
ug;-;-vyy—a.ayz (4)

vhere x, y, and 2z are distances along the cone generators from the
apex, normal to the cone, and along the circumference of the circular sec-
tions of the cone, respectively. The corresponding velocity components
are u, v, and w. The standard property symbols a, B, and v desig-
nate thermal diffusivity, expansion coefficient, and kinematic viscosity.
The symbols T, g, and Y represent temperature, gravitational accelera-
tion, and half the cone apex angle. In egs. (1) to (4), no changes in
the z-direction are shown since the flow is symmetrical about the cone
axis. Buoyancy is represented by the usual free-convection term in the
x-direction but has been neglected in the y-direction.

The stream function, defined by

Xu = %%, XV = -

=114

and the transformations
¥ = x2(vo sin 1) 22(n)
W= xu(sin 1)e(n)
T- T = (T, - T,)6(n)
n = ylo(sin Y)/v]l/2

where ® 1s the rotational speed of the cone and T, 1is the cone tem-
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perature, are substituted into egs. (1) to (4), and a series solution to

the resulting equations is proposed:

f = fy+ (Gr/Re?)f) + -+ « » (52)
g = gy + (Gr/Ref)gy ++ - - (5b)
6 = 6 + (Gr/Re2)6; + - - - (5¢)

vhere Gr = Bg (Ty - ﬂb)xs(cos Y)/v? and Re = x2w(sin v)/v are the
Grashof and the Reynolds numbers. Positive or negative values of Gr/Re2
are associated with buoyancy forces that aid or retard the forced flow

away from the cone apex. Two sets of ordinary differential equations re-

sult from equation of like powers of Gr/Rez:

£y' + 2f fa '2 + gg =0 (6a)

gy + 2f, 080 - 2f4&g = O (6b)

6p + 2 Pr £g84 = 0 (6¢)

I+ 2fyf] + 2ffy - 2f4f] + 2gyg) + 8p = O (7a)
" + 2fpg] + 2f, g - 2g5f] - 2g,fy =0 (7o)

6] + 2 Pr(f8] + £,63) =0 (7¢c)

where Pr = v/a is the Prandtl number. Corresponding to the physical
boundary conditions u=v=0, w=x0sinYy, T=T, at y= 0, and

u-v->w—>(T-T)-0 as y - =, the transformed conditions are

<
fo=f6=0’go=l’ eo=l
n=0
fl=fi=gl=91=o
) (8)
Tl—'bw
’ f1-8 -6 -0 J
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Egs. (8) and (8) are the same as those for the rotating cone or diék with-
out buoyancy that have been numerically integrated by Ostrach and Thornton
(ref. 3), among others. The tabulated results of ref. 3 provided the neces-
sary starting information for the numerical integfation of egs. (7) and (8).
Functions fl, gy and 61 for a Prandtl number of 0.72 are shown in fig. 1

together with fo, -2 Y) and 90. Surface derivatives are listed in table I.

TABLE I. - SURFACE DERIVATIVES OF TEMPERATURE AND VELOCITY

1
£20) | gy0) | ey0) | (o) | el0) | 61(0)
0.5102 -0.6159 -0. 3286 0.6200 -0.5044 ~0. 4002
RESULTS

Changes in local surface shear (in x- and y-directions) and heat

transfer due to buoyancy can be visualized by forming ratios

Tx/Txo = f"(O)/fg(O) =1+ (Gr/Rez)f{(O)/fS(O) doo 0
=1 + 1.215(Gr/Re?) + + + -« (9a)
/1,0 = &'(0)/g5(0) = 1 + (Gr/Re?)g;(0)/8)(0) + -

= 1 + 0.8189(Gr/Re2) + - - - (9b)
a/ap = 8'(0)/64(0) = 1 + (Gr/ReZ);(0)/6,(0) + -

= 1 + 1.218(Gr/Re2) + - » - (9¢)
where O subscripts refer to quantities on a rotating cone without buoy-

ancy effects that can be calculated from the definitions of shear and

heat flux:

T

]
|

x = 1(Bufy) ¢ = ux(w sin 1)3/2"(0) 12 (10e)

v, = u(efy), o = ux(w sin )%/ g1 (0) 4H/2 (10b)

q = -k(BT/By)yzo = -k(T, - T )(w sin r)l/ze'(o)/v (10c)
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and the values from ref. 3 that are listed in table I. The shear and
heat flux ratios defined by eq. (9) are displayed in fig. 2 along with
the corresponding results from the similarity solutions of ref. 1.

Calculations in ref. 1 were carried out only for flows with the buoy-
ancy forces directed away from the cone apex corresponding to (Gr/Rez) >0
in fig. 2. The isothermal solution is valid for flows with buoyancy di-
rected either towafd or away from the cone apex, as shown by the negative
and positive abééissa values in fig. 2.

The increase of Tx/TxO with Gr/Re2 in the similarity case is
nearly linear, while the other ratios in fig. 2 increase with more cur-
vature. If this trend carries over into the isothermal solution, the
truncated series for Ty is a better approximation to the final solution
than those for T, and q since curvature is introduced by higher order
terms than those presented herein.

The accuracy of the isothermal solution is limited by the nature of
series solutions to small values of the expansion parameter Gr/Rez.
Since Gr/Re? ~ 1/x, the solution improves in accuracy with x. In fact,
the convergence of the solution can only be expected away from the cone
apex. Actually, this feature is an advantage since the boundary-layer
idealizations do not describe the flow in the neighborhood of the cone
apex but are a good approximation of the flow in the region of conver-
gence of the series solution.
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Filg. 2. - Effect of buoyancy on surface
shear and heat transfer.
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